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Chapter 1

Introduction

1.1 Background
Epsilon AB has, through an internal competency development program, developed
a small quadcopter, which can be controlled wirelessly by a user, using a computer.
They now want to extend it with functionality to display an image stream from
the perspective of the quadcopter to the user, which should be possible to use to
control the quadcopter also when the user doesn’t have visual contact with it.

The problem to be solved is then a combination of a system design and a
system integration problem where a system for capturing and transfering images
shall be designed and then integrated with the existing quadcopter system. This
to enable that the quadcopter can be controlled by an operator with the images
acquired from the quadcopter as the only source of information.

There exists similar system today for larger UAVs [5, 8]. What is new with this
project is the small size and limited resources of the target system with which the
camera system is to be integrated.

1.2 Purpose
The purpose of this master thesis project is to first evaluate what requirements
must be fulfilled for a camera system that is to be mounted on a lightweight
quadcopter for the use of remote control of such a system and then to design a
prototype of such a system and evaluate its real world performance.

1.3 Disposition
The report begins with an overview of the current CrazyFlie system followed by a
theoretical analysis of its capabilities. The analysis is then followed up by a section
on measurements done to verify and supplement the theoretical calculations.

After that follows a short study of the necessary quality and performance re-
quirements for the image stream from the CrazyFlie to the computer, the the-
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2 Introduction

oretical material is then complemented by some practical tests using a Parrot
AR.Drone. After this is a short overview on the different raw image formats that
is commonly used as input for JPEG compression. This is then followed up with
calculations on what will be possible to achieve given the constraints that was
found in the calculations on the existing CrazyFlie system.

The report then goes on evaluating different camera systems for use on the
CrazyFlie given the limitations and requirements found earlier. After the compar-
ison is finished a camera system is selected as the one to use.

With a camera system selected, the report then describes how the necessary
hardware and software for integrating the camera system with the CrazyFlie sys-
tem is designed and then finally evaluates how well the camera system is working.



Chapter 2

Original System

The CrazyFlie quadcopter is shown in figure 2.1. It weighs about 20 grams with
battery, measures 3.8cm along the side of the base and 9.8 cm between opposing
engines.

The quadcopter is controlled wirelessly from a nearby computer, via a radio
on a USB dongle. The pilot uses a gamepad to control the quadcopter. Ac-
celerometers and gyros in three dimensions allows the quadcopter to determine its
orientation and keep itself from overturning.

Power is delivered from a 170 mAh battery when the power button is pressed.
The quadcopter is also on, and charging, when connected by USB to the computer.
When on, the blue LED is lit and the red LED indicates data traveling through
the wireless link. The green LED indicates the calibration status, when blinking
slowly the quadcopter has not been calibrated its sensors and will not lift. The
sensors will be calibrated when then quadcopter is put on a flat surface and the
green LED will start to blink faster.

Add-ons can be connected to the quadcopter through the use of the expansion
pin header on the top side.

Figure 2.1: The CrazyFlie quadcopter

3



4 Original System

Preamble
1 byte

Address
3-5 bytes

Packet
Control
Field
9 bit

Custom
Protocol
Header
1 byte

Payload
0-31 bytes

CRC
1-2 bytes

Figure 2.2: Quadcopter wireless packet format

2.1 System Overview
The heart of the CrazyFlie is the STM32F103CB [35] Cortex-M3 microcontroller
(MCU), running FreeRTOS. It uses several tasks to control the motors, communi-
cate via the radio and read the sensors. Energy comes from a Li-Po battery with
3.7 V nominal voltage. Power consumption with the motors off is about 250 mW
and about 5 W when the quadcopter is hovering. The motors are supplied with
the battery voltage directly after the charging chip, while the rest of the system
runs on two regulated 2.8 V power rails. Each of the 2.8 V regulators is capable
of supplying 150 mA[18] of which 70 mA are used in total.
how much from each? too much info on quad?

Motor type and rotation speed?

2.1.1 Quadcopter Radio
Nordic nRF24L01 [3] is the radio chip mounted on the CrazyFlie. It communicates
with the microcontroller using SPI.

Wireless communication with the USB dongle is performed at 2.4 GHz using
a custom protocol on top of the Nordic Enhanced ShockBurst (ESB) protocol.
ESB is a master-slave protocol which supports error detection and retransmission
through the use of ACK and CRC checks. The transmission channel is half-duplex,
which means that the master and the slave has to alternate between sending and
receiving. Only the master can initiate a transfer and data from the slave is added
as payload to ACK packets sent back to the master. The maximum payload is 32
bytes per packet in both directions and only one packet is in the air at the same
time. The quadcopter is the slave and the USB dongle the master, in the current
system. [3]

The custom quadcopter protocol uses one byte of the payload for its header,
which contain priority and target module data, effectively giving a maximum
packet payload of 31 bytes as seen in figure 2.2.

The radio can communicate with another radio at 250 kbps to 2 Mbps and the
maximum output power is 0 dBm (1 mW). Note that the rate is the rate of whole
packets and that the rate of the payload will be lower (refer to section 2.2.1). The
radio is set to communicate with the USB dongle at 2 Mbps. Power consumption
is maximally 38 mW when transmitting or receiving and about 1mW in standby.
[3]

The radio chip is connected to an omni-directional ANT-2.4-CHP SMD-format
antenna with 0.5 dBi maximum gain [36].



2.1 System Overview 5

JT
A
G

VCC 1 2 TMS
I2C_SCL 3 4 TCK
I2C_SDA 5 6 TDO

NC 7 8 TDI

DGND 9 10 SNRST

EX
P

SPI1_MOSI 11 12 SPI2_MOSI
SPI2_SCK 13 14 SPI2_MISO

VCC 15 16 VCOM
DGND 17 18 DGND
AGND 19 20 VCCA

Figure 2.3: Pinout for the CrazyFlie JTAG and EXP connector

VCC 1 2 SWDIO/TMS
GND 3 4 SWDCLK/TCK
GND 5 6 SWO/TDO
KEY 7 8 NC/TDI

GNDDetect 9 10 RESET

Figure 2.4: Pinout for the Cortex Debug connector[12]

2.1.2 Pin Headers
The CrazyFlie is equipped with two 2×5 pin header connectors, called EXP and
JTAG respectively. JTAG is designed from the Cortex debug connector pinout[12]
and is used for programming and debugging the microcontroller, while EXP al-
lows for connection of add-ons. Both connectors share the same numbering. Pin
descriptions can be found in table 2.1 and the connectors are shown in figure 2.3
and 2.4.

The EXP header contains 3 pins connected to an SPI bus shared with the
radio. These pins must therefore be used as an SPI bus. The last MCU I/O pin
on the EXP header can be used without limitations, for example as a chip select
for the SPI bus. The rest of the pins provide access to all the supplies on the
board.

The JTAG header is mainly intended for JTAG programming/debugging, how-
ever it should be possible to use most pins for general I/O if designed carefully.
Looking at figure 2.3 and 2.4 one can see that the I2C connections correspond to
the ground pins on the Cortex debug connector and since I2C nodes only set pins
low, there is no electrical conflict. USART usage may however render shorts with
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Header Pin Connected to Description

JT
A
G

1 VCC Digital supply (2.8 V)
2 PA13/TMS MCU GPIO/JTAG
3 PB10/I2C_SCL/TX MCU GPIO/I2C/USART
4 PA14/TCK MCU GPIO/JTAG
5 PB11/I2C_SDA/RX MCU GPIO/I2C/USART
6 PB3/TDO MCU GPIO/JTAG
7 NC Not connected
8 PA15/TDI MCU GPIO/JTAG
9 DGND Digital ground
10 SNRST MCU reset

EX
P

11 PA7/SPI1_MOSI MCU GPIO/SPI1
12 PB15/SPI2_MOSI SPI21

13 PB13/SPI2_SCK SPI21

14 PB14/SPI2_MISO SPI21

15 VCC Digital supply (2.8 V)
16 VCOM Common supply (5.5 V)
17 DGND Digital ground
18 DGND Digital ground
19 AGND Analog ground

1 SPI bus shared with radio chip

Table 2.1: Pin descriptions for the JTAG and EXP connectors. Pins
are either connected to the supply voltages or pins on the microcon-
troller.
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the JTAG ground if the pins are set high.

2.1.3 USB Radio Dongle

The radio dongle is based on the nRF24LU1+[4] chip, which combines an nRF24L01+
(very similar to the one used on the CrazyFlie, see 2.1.1), an 8051 microcontroller
with full speed USB 2.0 capability and a 16 KiB flash memory [4]. Figure 2.5
shows the USB dongle.

Figure 2.5: The CrazyRadio dongle

The dongle acts as an USB device and relays packets between a computer (the
USB host) and the quadcopter.

When using USB, the device establishes a number of endpoints, which can
be seen as communication channels. Each endpoint support transfer of data in
one direction and can be optimized for different kind of data, for example control
messages or bulk data transfers. [6]

USB 2.0 full-speed supports a transfer rate, including USB headers, of up
to 12 Mbps, half-duplex. Data is sent and received in transfers, which are split
into several packets. Each kind of transfer gets a certain amount (sometimes
guaranteed) of, what is called, a frame. These frames are 1 ms each, that is,
1000 frames per second (FPS) are communicated. The host acts as a master and
initiates all transfers. [6]

2.1.4 Computer Application

A Python script translates inputs from the gamepad and sends them to the
CrazyFlie via the USB dongle. The script also shows the values of the differ-
ent inputs, as shown in figure 2.6. The script runs on both Microsoft Windows
and various Linux distributions.
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Figure 2.6: Python control application for CrazyFlie

2.2 Performance Calculations
2.2.1 Theoretical throughput of radio channel
As the computer acts as master in the radio communication it is the bandwidth
for the ACK packets that is important for the transfer of image data. To maximize
the bandwidth all ACK packets will carry their maximum payload of 32 bytes.

The time TESB for an ESB cycle can be expressed according to equation 2.3.
[3] Two different border scenarios will be considered, one where all headers and
the data payload is of maximum size, and one scenario where the header is of
minimum size and there is one byte of data payload. This gives the parameters in
2.1 and 2.2 respectively. [3] For each of these scenarios all three speeds that the
radio can run at are considered.{

data packet length = 329 bits
ACK packet length = 329 bits

(2.1)

{
data packet length = 57 bits
ACK packet length = 297 bits

(2.2)

Furthermore some timing constants is defined directly in [3] and here specified
in equation 2.4.

TESB = TUL + 2 ·Tstby2a + TOA + TACK + TIRQ

TOA = data packet length
data rate

TACK = ack packet length
data rate

TUL = payload length
SPI data rate

(2.3)

{
Tstby2a = 130 µs
TIRQ = 6 µs

(2.4)
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Radio data rate
250 kbps 1 Mbps 2 Mbps

Worst case 2830.32 µs 946.77 µs 634.01 µs
Best case 1648.62 µs 612.93 µs 440.31 µs

Table 2.2: ESB cycle times

Radio data rate
250 kbps 1 Mbps 2 Mbps

Worst case 85.57 kbps 255.53 kpbs 381.99 kpbs
Best case 146.90 kbps 395.13 kbps 550.04 kpbs

Table 2.3: Effective ACK data rates

From this can then first the total time of an ESB cycle be calculated, and
the results is summarized in table 2.2. The effective ACK transfer rate is then
calculated using equation 2.5. The effective payload is one byte less than the real
payload due to one byte being overhead of the protocol used in the CrazyFlie. The
effective ACK data rates is summarized in table 2.3.

rACK = effective payload
Tesb

(2.5)

2.2.2 Delay calculations
As the images is to be used for remote control of the quadcopter it is important
that there isn’t too much delay from the point where the image is taken until it
can be displayed to the user. The delay that can be directly calculated is the
delay from when the readout of the image from the camera can be started until
the point when it has been successfully transferred to the computer.

It will be assumed that the camera module outputs compressed JPEG data
either over a parallel interface where the camera module acts as master and dictates
data rate and timings. Or over a serial SPI/UART interface where instead the
MCU is master and has control over timings and data rate. Depending on this two
slightly different situation arises, with a serial interface the module can interface
directly with the MCU that is present on the quadcopter while with the parallel
interface a second MCU will be necessary, both due to pin constraints and timing
problems so that the primary MCU isn’t held up receiving data at critical moments.

In both cases some variables are in common, and those are defined in 2.6. The
value used for rACK was chosen according to the results for 2 Mbps link speed in
section 2.3.2 for 16 bytes of data payload with some extra margin. The average size
s of the transferred image was chosen according to the calculations in section 3.4.2
as the maximum allowed size to achieve 15 FPS with 200 kbps average link speed.
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These selections ensures that there are ample of margin in the calculations so that
if it works for this case the real world values could be worse without that being a
problem.



rSP I = 4.5 Mbps − SPI rate used in the quadcopter
rACK = 300 kbps − Effective ACK bandwidth of radio channel
s = 1.67 KiB − The average size of an compressed image frame
np − Number of radio packets required in average for a frame
td − Total delay for a frame from start of readout until last packet has been received

(2.6)
Delay will be calculated from the point when the first bit of data for a frame

is available for transmission to the MCU until the last bit has been received and
acknowledged over the radio channel. This is as the delay up to this point is
highly dependent on camera module solution. Delay for processing and rendering
the image on the computer at receiving side is also ignored.

Camera module connected to separate MCU over parallel bus

A setup where a camera module is connected to an separate MCU over a parallel
DVP interface. The MCU is then connected as a secondary master to the same
SPI bus as the radio, and is allowed write access by the main MCU over some
separate communication channel.

Delay from the point where the image taken until the first data is available
over the parallel bus is not included in these calculations.

As the parallel interface outputs a frame at a continuous rate the MCU should
have space to buffer an entire frame, 3 KiB of memory available for this is more
than enough.

All variables used in the calculations is described in 2.7 and 2.6. Initial calcu-
lations will be pessimistic assuming full buffering of a frame and no pipe-lining.


fpclk − 36 MHz − Pixel clock frequency
tcc − Transfer time for a frame from camera to MCU
tecc − Effective transfer time for a frame from camera to MCU

(2.7)

With a 8-bit interface 1 byte is transferred from the camera module to the
MCU each cycle of the pixel clock, and the time needed to transfer the entire
image is given by equation 2.8. This does assume that the JPEG data comes at a
continuous stream, which isn’t the case in reality. No data is currently available
about the real transfer time, so for now it is assumed that only 1/10 of the time
is spent doing actual transfer
Look at this

. The total transfer time is then given by equation 2.9.

tcc = s

fpclk
= 1.67 KiB

36MHz
≈ 47.5 µs (2.8)
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DVP tecc

SPI 1cr 1rc 2cr 2rc 3cr

7rc 8cr 8rc 9cr

radio 1data 1ack 2data 2ack 3data

8data 8ack 9data 9ack

Figure 2.7: Parallel timings

tecc = tcc · 10 ≈ 61.85 · 10 = 475 µs (2.9)

tSP I = data size
rSP I

(2.10)

From equation 2.10 the time needed to transfer 32 bytes of data over the
SPI-bus is calculated as 54.25 µs.

Now enough data to derive the timing diagram in figure 2.7 is available. The
timing diagram shows that the transfer from the camera module to the MCU can
done fully in parallel with the radio transmissions, so it’s

Using equation 2.11 it is found that the number of packets, np, required to
transmit a frame is 430. From this does equation 2.12 give the delay, td, as
43.4 ms.

np = 1.67 KiB
31 bit ≈ 430 pcs (2.11)

td = 31 bit
300 kbps · 430 ≈ 43.4 ms (2.12)

Camera module connected to main MCU over serial bus

A setup where a camera module is directly connected to the main MCU over a
serial bus. Both SPI and UART is considered, and as in the case of SPI the bus
is shared with the radio the bus usage will be calculated to ensure that there is
enough margin remaining.

The time to transfer 32 bytes over the SPI-bus was earlier derived from equa-
tion 2.10 and found to be 54.25 µs. The time for the data and ACK parts of
the ESB cycle can be calculated according to equation 2.13 [3], where maximum
header and payload sizes is used. This gives about 290 µs for each part. From this
the timing diagram in figure 2.8 is derived.{

data time = TOA + Tstby2a ≈ 286.88 µs
ack time = TACK + Tstby2a + TIRQ ≈ 292.88 µs

(2.13)
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SPI 1jc 1cr 1rc 2jc 2cr 2rc 3jc 3cr

8rc 9jc 9cr 9rc

radio 1data 1ack 2data 2ack 3data

8data 8ack 9data 9ack

Figure 2.8: Serial timings

As seen in figure 2.8 all SPI transfers on the MCU side will be done in parallel
with data being transmitted over the radio. So the delay will be identical to the
parallel case, that is 44.3 ms.

Using USART instead of SPI to communicate with camera module wouldn’t
affect delay as long as it is fast enough so that the transfer is finished so that
the SPI bus has time to transfer the data to the radio before it is needed. To
accomplish this it has a maximum of 634.01 − 54.25 = 579.76 µs to transfer 248
bits. So the required effective speed is 248 bit

579.76 µs = 427.76 kbps, corresponding
to an UART speed, in 8n1 mode, of 534.7 kbps. So the UART would need a
baudrate of at least 534700 baud to work under optimal conditions where date
can be continuously transferred without any extra delay, in reality extra margins
would be needed so at least 1 Mbaud would probably be necessary.

Delay for USB transfer

Some extra delay is also added by the transfer from the radio dongle to the host
computer over USB. In section 2.3.3 it was found that at least three 32 byte
packets could be sent every millisecond. Furthermore it was found in section 2.2.1
and summarized in table 2.2 that the minimum time for an ESB cycle is 440 µs,
that is at maximum about 2.3 packets will arrive every millisecond. So no extra
buffering must be done and the extra delay added by the USB transfer will be less
than a millisecond.

2.2.3 Packet loss
All above calculations has assumed that no packet loss will occur, in reality this
is not the case, so here the effects of packet loss will be studied. Calculations is
done on a 2 Mbps link. According to the datasheet with 32 bytes of payload is the
minimum time to wait before retransmission, in this case 500 µs if no ACK has
been received. Adding to this the TX time does each lost packet add 656.88 µs to
the total time.

Without packet loss the total time to transmit a packet was 44.3 ms, which
equals 22.57 FPS. Factoring in that n retransmissions happens per frame the new
frame rate is given by equation 2.14. The result is plotted in graph 2.9.

FPS = 1
44.3 ms + n· 0.65688 ms (2.14)
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Figure 2.9: FPS vs retransmissions

2.3 Measurements
To find out the capabilities of the CrazyFlie, several tests and measurements were
performed. Firstly, mounting a camera on the quadcopter will effectively increase
its weight, which in turn may decrease its maneuverability and battery life. Sec-
ondly, the radio link will probably not perform as good as indicated by the theo-
retical calculations. Physical obstructions, external noise sources and the distance
between the radio dongle and the quadcopter will affect the radio link performance.

2.3.1 Flight Time and Lift
A simple test scheme was devised to find out how much weight the quadcopter
could lift and for how long it could stay airborne loaded with different weights.

Test Setup and Execution

The quadcopter was charged for at least 30 minutes before each test to make sure
that the battery was fully charged. All tests were performed indoors at the same
location, with no obstacles. There were 10 to 15 wireless networks covering the
area. In each test, a weight was attached to the quadcopter using a rubber band.
The rubber band was left in place when testing the lift without any added weight.

At the start of a test, the quadcopter was disconnected from the USB cable
used for charging, and placed on the floor. Thereafter it was turned on and the
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Figure 2.10: Illustration of the different weight positions tested (cross indicates
center of gravity)

computer control application was started. The pilot then kept the quadcopter in
the air, as much as possible, during the rest of the test. The test was terminated
when the quadcopter no longer reacted to the commands from the pilot, due to
battery drain.

Extra lift force needed was measured by slowly increasing the thrust, using the
control application, until the quadcopter overtook the force of gravity and moved
continuously upwards.

Any extra weight was placed under and in the center of the quadcopter printed
circuit board (PCB) and the full test performed. The value of the weights were
measured 3 times each on a letter-scale, with 1 grams resolution, and the average
value used.

Tests with unbalanced extra weight were also performed. The 7.5 grams weight
was placed at 45 degree increments offseted from a line through to opposing motor
arms. This is indicated by figure 2.10.

Results

More data points. Time data does not say anything

The CrazyFlie was able to take off in all tests except with the 20 grams extra
weight. The pilot felt that handling started to suffer considerably when using the
7.5 grams weight. The measured data is shown in table 2.4.

The time from turning the quadcopter on to losing control is listed as battery
time. Flyable time begins at the same time but ends when the quadcopter cannot
generate enough lifting force to keep itself in the air (this force is less than the
force required for taking off). No times are listed when the quadcopter did not
take off or when the test could not be completed due to damages.
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Test
num-
ber

Added weight [g] Takes off Battery time Flyable time Lift

0 20 no − − −
1 4 yes − − −0.31
2 0 yes 11:06 11:06 −0.27
3 7.5 yes 9:40 5:20 −0.35 Copter was off for 1min due to prop change
4 4 yes 7:36 7:36 − Only charged 20 mins
5 4 yes 8:12 8:12 −
6 7.5 yes 8:00 4:48 −
7 2 yes 9:01 9:01 −0.29 Working again after motor gondol repair
8 2 yes 6:20 6:20 − Battery problem? Was charged >30 min. First test after replacing motor
9 2 yes 6:38 6:38 − Battery or motor problem?
10 0 yes 7:23 7:23 −
11 6 yes 8:16 6:50 −0.37 Changed to a "unbalanced" propeller. Longer time than with 6g though..
12 4 yes − − −0.34 Unknown fault crash

Table 2.4

Thrust indicates the value given by the control application and is thus mostly
of interest for comparing the different measurements against each other.
insert more text when more data points have been collected

Insert plot

Different positions of the 7.5 grams weight affected the quadcopter’s ability to
stay flat and its maneuverability. The quadcopter performed well as long as the
weight was placed on a line along one of the motor axes with its center of gravity
inside the area of the quadcopter’s main body. Moving the weight such that the
center of gravity ended up outside the base made the quadcopter tilt and drift in
the direction of the weight.

Placing the 7.5 grams weight in-between to motor axes, the quadcopter was
not able to lift when the weight’s center of gravity was at a corner of the base.
Not until moving the weight, such that it was only 1/4 of its diameter outside the
base, was the quadcopter able to take off, albeit with a large drift in the direction
of the weight.
Area outside would be interesting. Same as for 90 degree angles?. Refer to the
placement figure mentioned earlier

2.3.2 Radio Data Rate
To complement the theoretical calculations of the achievable data rate for the
ACK packets over the radio channel several practical measurements were done
under different conditions.
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Test Setup

The code for the CrazyRadio and the CrazyFlie was modified to keep the TX-
FIFO:s in their respective radio chip full all the time.

For the quadcopter this was done by adding a new task which just added
packets to an existing queue in the CRTP layer. The code in the radio layer was
also changed to not disable the radio during the readout of packets as this was
found to be quite deteriorating on the radio performance.

In the radio dongle it was just added a loop which continuously polled the radio
for events and at each event ensured that the TX-FIFO was filled. The code in the
radio dongle was further more modified to count the number of packets successfully
transmitted and the number of packets which reached the maximum number of
retransmissions. When 1 Mibit of data have been received from the quadcopter
the value of a timer is read out and send to the host over USB together with the
packet counts, and the timers and counter is then reset and the process restarted.

The initial plan was also to measure the number of retransmissions, but as this
counter was automatically reset at the start of each new transmission it would
have had to be read between one transmission was completed successfully and the
next stared. And as the TX-FIFO is kept full at all times the next transmission
is started automatically when the previous one is finished, leaving no time for
readout of the retransmission counter.

The Auto Retransmit Delay (ARD) is set to 500 µs for link speeds of 1 Mbps
and 2 Mbps is the minimum values required to ensure proper operation with 32
byte ACKs.[3] The maximum number of retransmissions for a packet is set to three
for all cases.

The data rates is measured with data payloads of 1, 16 and 32 bytes for 2 Mbps
and 1 Mbps, initially the plan was to measure also for 250 kbps but it turned
out that mistakenly a nRF24L01 which doesn’t support 250 kbps link speeds [3]
instead of a nRF24L01+ had been mounted on the quadcopter. The ACK payload
is always set to 32 bytes. For the calculations a value of 31 bytes is used as the
data transferred with each ACK to compensate for that 1 byte is occupied by the
CRTP header in the real communication. All tests is done at several distances first
at about 0.15 meters from the radio dongle, then at 5 meters and from there at
5 meters steps up to 15 meters. The tests were executed in an open indoor room
and there are several wireless LAN:s active in the building. Both the computer
and the quadcopter is placed on top of XXX meter high chairs.
Measure height

.
Cleanup of and reference to used code here (appendix or something else?)

Results

Some attempts to count the number of retransmission by setting the maximum
number of retransmissions per packets to 0 was made, under these conditions not
a single packet was delivered successfully, even when increasing the ARD.
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Figure 2.11: ACK data rates

The effective ACK data rates with 16 bytes of payload in the data packets with
the CrazyFlie at different distances from the transceiver is plotted in figure 2.11.
For both link speed the ACK data rate was relatively stable and only slightly
affected by increased distance. The exception being the test at 5 meter distance
for 2 Mbps link speed where large fluctuations in speed was present, possibly due
to some kind of signal interference.

Varying the data payload at 2 Mbps link speed had the expected result, except
at 5 meter distance where the fluctuations is to large to give reliable values, of that
and increased payload decreased the ACK data rate and vice versa. At 1 Mbps
link speed the behavior was not as expected, here an increase in the data payload
actually increased the ACK data rate.

The raw data from the measurements is available in table A.1 and A.2.

2.3.3 USB Measurements
To verify that the radio dongle will be able to deliver enough performance over
the USB channel some simple measurements was done.

Test setup

The CrazyRadio is configured with EP2 used for both IN and OUT transaction,
and to maximize performance EP2 is paired with EP3 to achieve double buffering.
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Figure 2.12: USB data rates

The dongle runs a loop which writes 33 bytes of data, which simulates sending a
full radio packet + current radio status, to the the EP2 IN buffer if there is any
space available there and just clears the EP2 OUT buffers if any data appears in
them. The radio parts of the dongle is not utilized at all during these test.

On the client side a loop first writes dummy data to EP2 OUT and then reads
data from EP2 IN. Both operations is done with the minimum timeout of 1ms
supported by PyUSB 0.4.2. The test is performed with dummy data sized of 1,
16 and 32 bytes.

Results

The results of the measurements is plotted in figure 2.12. As seen the rate stays
above 700kbps for all payloads in the test, and as it in section 2.3.2 was found
that the peak radio rate was about 350kbps this speed is more than enough to
not be the limiting factor.

2.3.4 Image transfer measurements
After verifying that the individual links was able to deliver enough performance
to satisfy the requirements some measurements was also done on the entire chain,
transferring data from the CrazyFlie through the radio dongle to the computer,
and at the same time allowing control data to go through from the computer to
the quadcopter.
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Figure 2.13: Image data rates

Test setup

For the quadcopter the same code as in the radio rate tests in section 2.3.2 is used,
the code in the main loop of the radio dongle was rewritten to transmit 1 byte
dummy packets to the quadcopter when there is nothing else to transmit. This to
allow image data to be sent on ACKs from the quadcopter to the radio dongle as
often as possible.

The physical setup and execution of the test is the same as in section 2.3.2.
Also some extra tests to see the effects of obstacles is executed.
Code references

Results

The results for the tests at different ranges is summarized in figure 2.13, the raw
results is available in table A.3. Up to 10 meters the results was stable for both
link speeds, but at 15 meters the bandwidth started to drop and fluctuate more,
especially at 2 Mpbs.

For 1 Mbps the results from this test does actually outperform the results from
section 2.3.2 which is strange as these tests adds complexity by also transferring
the data from the dongle to the computer over USB. For 2 Mbps the results are
slightly lower than in section 2.3.2.

The results when putting obstacles between the quadcopter and the radio don-
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gle is available in table A.4 and A.5. For both speeds the effect of having a closed
door with a window in it between did not affect the results very much, but when
also moving the quadcopter so that both the door and a wall was in between the
performance at 2 Mbps dropped sharply while only a small drop was present at
1 Mbps



Chapter 3

Video

This chapter discusses different aspects and requirements on acquiring the video
and transferring it from the CrazyFlie to the client application. Please refer to
table 3.1 for image resolutions used throughout the text.

3.1 Important Factors

There are several factors that will be important when controlling the CrazyFlie
using video as visual feedback. The following text describes each of them briefly.
Much of the information relates to remote controlled cars, not copters, but the
information should still have some relevance. After listing the factors, some ex-
perimental tests of the Parrot AR.Drone follows.

longer text? :)

Abbrevation Dimensions [pixels] Megapixels
VGA 640×480 0.31
QVGA 320×240 0.08
QQVGA 160×120 0.02
QQQVGA 80×60 0.00
QQQQVGA 40×30 0.00
CIF 352×288 0.10
QCIF 176×144 0.03

Table 3.1: Resolutions used in the report together with their correspondence to
megapixels

21
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3.1.1 Physical Factors
Angle of View

What determines how much of the surroundings that the driver sees is the angle of
view. For a human, the angles are more than 140◦ horizontally and 60◦ vertically
[14, 1]. This translates to more than 150◦ diagonally. A typical wide angle lens
(35 mm camera with 50 mm lens) captures 90◦ horizontally [1]. In tests, with the
subjects remote controlling a car using video feedback, it was found that a diagonal
angle of 50◦ is required while 100◦ is preferable [14]. This can hopefully be roughly
translated to a flying vehicle, although a bit larger angle could be required due to
the possibility to move vertically.

Magnification

A magnification factor of less than 1.0 (zoomed out) may give the driver a better
view, but he will perceive movements as smaller than they are and therefore have a
harder time to control the vehicle. A magnification factor greater than 1.0 (zoomed
in) may also confuse the driver, because the relation between camera rotation and
image translation is different as compared to a magnification factor of 1.0. [14]

Camera Placement

camera aim. we have some data in drone tests. refer to that?

Placing the camera such that part of the vehicle is visible increases the driving
performance and the situational awareness of the driver. It could also be mounted
such that it can move and provide variable viewing direction, giving the driver a
larger angle of view. However, this forces the driver to keep track of the camera
versus vehicle direction without any body feedback (such as turning the head to
look sideways). This could partly remedied by direction indicators or by controlling
the camera direction using head-movement. [14]

Monoscopic/Stereoscopic View

Two cameras can be mounted side-by-side to provide stereoscopic (3D) vision and
it was found that this increase the ability, for a person driving a car, to more easily
avoid obstacles and ditches within 10 meters. For driving a car on flat or paved
terrain it is however sufficient with a monoscopic (one camera) view. [14]

Vibration

A slow shutter speed will lead to wavy pictures due to vibration. Vibrations from
the rotors are larger in helicopters than airplanes, due to their larger main rotor
[15]. However, the quadcopter has small, albeit fast, moving rotors.
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3.1.2 Software Factors

Resolution

Better heading?

When remotely driving a car on a flat surface the image resolution can be as
low as 64×60 px pixels with a 80◦×60◦ angle of view. For driving in terrain, the
resolution must be at least 20 times larger. Increasing the resolution per degree
by shrinking the angle of view hampers the driver’s ability to get a correct picture
of the environment and may lead to disorientation. [14] It is easily seen that image
cropping will affect the angle of view, since outer parts of the image is removed,
while scaling will lower the resolution per degree.

Color Depth

A higher image color depth increases the driver’s ability avoid obstacles. Color
images are needed when driving a car in rough terrain, black and white images
are sufficient when driving on a paved surface. [14]

Frame Rate and Latency

A low frame rate hampers perception of motion, speed and heading. For driving
a car through a curve, the driver needs a frame rate of at least 10 Hz. Delayed
feedback through video latency degrades manual control performance and may,
with considerable time delays, lead to the driver employing a go-and-wait or bang-
bang (e.g. max left - max right - max left) control strategy. Lower frame rate and
longer latencies seem to affect the driving performance in the same ways. [14, 13]
Tests performed in a helicopter flight simulator show that a pilot’s ability to hover
at a fixed position was hampered when the video latency reached 134 ms [19]. The
authors believe that increased velocity and acceleration will require a higher frame
rate, due to the larger changes between to frames.

Control Aid

At the client application side, the pilot can be aided by a grid projected on the
ground, indicating the UAV’s relative movements and orientation. A computer-
generated world can also be projected around the visible image, effectively enlarg-
ing it. It is believed that this kind of enhancement allows the pilot to acquire the
information directly by the visual system, without having to manually interpret
overlay data. [14]
Address each factor and provide a “solution”. Separate section? Put in differ-
ent part of design? Some discussion in video_factors.txt
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3.2 Parrot AR.Drone Experiments

To better understand the requirements of the new camera system some tests were
performed with the Parrot AR.Drone[33] (figure 3.1). The AR.Drone is a quad-
copter that can easily be controlled from a smartphone or a computer through a
WiFi connection. It weighs 420 grams and measures 52.5 cm × 51.5 cm with its
protective indoor frame mounted. Contrary to the CrazyFlie, the AR.Drone has
sensors that allows it to maintain its position in the air. [34]

The AR.Drone streams video from two cameras in a format called UVLC, which
very closely resembles a stream of JPEG images. One camera is mounted on the
front, and streams images with 93◦ diagonal angle of view and QVGA resolution.
The other camera is mounted downwards, and streams images with a 64◦ diagonal
angle of view and QCIF resolution. Both streams provide images at 15 FPS. [34,
30]

Figure 3.1: Parrot AR.Drone
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3.2.1 Testing and Results
To test how the various video factors (section 3.1) affected the performance of
the pilot, the AR.Drone computer client software was modified in several ways.
Support for changing the resolution (by scaling), the angle of view (by cropping),
the frame rate (by dropping frames), the video delay (by buffering frames) and the
color depth (color/grayscale) was implemented. The AR.Drone firmware version
was 1.7.11 and client software version was 1.8.
code/modifications in appendix?

Initially a test course was set up to test how the time to complete the course
was affected by different video settings, however, lack of experienced pilots made
it impossible to get repeatable results. Some observations made by the authors
will be listed instead.

The retrieved image was viewed at QVGA resolution in all tests, by performing
a suitable scaling after any previous image modifications. It is worth to note that
the AR.Drone performs lossy compression on the image data before sending it to
the client [30]. This will most certainly make subsequent transformations appear
to degrade the images more than if no lossy compression was used. When looking
at the results one should also remember the very good stabilizing features of the
AR.Drone, making it easier to control than the CrazyFlie.

(a) QVGA (b) QQQQVGA

Figure 3.2: AR.Drone image at QVGA (a) and QQQQVGA (b) resolution (larger
versions can be found in figure B.1)

To test the effect of different camera resolutions, the received image was scaled
in several steps to down QQQQVGA. The pilot had no problems navigating the
AR.Drone at QQQQVGA (figure 3.2), but felt that the image was much more
blurry compared to QQQVGA. All images can be found in section B.1.
nice pic that explains angle of view and cropping? at least figure that shows
how to measure it. can show both sides of lens :)

Angle of view tests was performed by cropping the image with a diagonal
cropping factor from 1 to 2 (area factor of 1 to 4). Measurements of the physical
distance between the endpoints in view was taken and the angles calculated as
described in appendix B. It was found that the pilot had no problems navigating
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the AR.Drone even with a diagonal angle as small as 50◦ (this corresponds well to
the research described in section 3.1.1). Please refer to section B.2 for the complete
set of images.

The frame rate was easily halved by dropping every other frame, resulting in
7.5 FPS. This did not have a large impact on navigating the AR.Drone. Neither
did turning the color image into grayscale.

Introducing delay was done by buffering the retrieved images in a FIFO. How-
ever, due to the client image pipeline not being timed there was no way to control
the exact time delay with a few simple software modifications. Also, the delay
from taking the picture to receiving it in the client was unknown. The authors
concluded that large delays resulted in go-and-wait and bang-bang control, as
mentioned in section 3.1.2.

It was also observed that, using the front camera, it was very hard for the pilot
to determine the altitude of the AR.Drone. Not being able to see the edges of the
AR.Drone made the pilot unable to avoid hitting the walls while flying close to
them. This could probably have been remedied by the ideas in section 3.1.1.

Using the bottom camera was found to be of no use, since indoors the AR.Drone
cannot cover much of the ground at an altitude of about 2 meters. Further, a floor
without distinct features made it very hard for the pilot to navigate.

3.3 Raw formats
The data output from an image sensor after image processing can be in a few
different formats, when the intended end format is a JPEG compressed image the
Y ′CbCr format is most commonly used. This due to that when luma and chroma
is separated the JPEG algorithms is able to achieve a better compression ratio
[21].

Three different Y ′CbCr formats are usually available, Y ′CbCr 4:4:4, Y ′CbCr

4:2:2 and Y ′CbCr 4:2:0 where the difference is the amount of chroma subsampling.
For all three versions the Y’ channel is always represented with 8 bits per pixel.
For 4:4:4 no chroma subsampling is done, so the chroma channels are represented
with 8 bits each, giving a total for 24 bits per pixel. With 4:2:2 subsampling both
Cb and Cr is subsampled with a factor 2 in the horizontal direction, giving an
average of 4 bits for each chroma channel per pixel and a total average of 16 bits
per pixel. Finally for 4:2:0 the Cb and Cr channels is subsampled with a factor
2 in both the horizontal and the vertical direction giving an average of 2 bits per
pixel for each of the chroma channels and a total average of 12 bits per pixel.[21,
32]

3.4 Theoretical Requirements
3.4.1 Frame rate
Using information from section 3.1.2 and the frame rate tests of the AR.Drone in
section 3.2 the target frame rate of the image stream is set to 15 FPS, but may
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Figure 3.3: Maximum image size

if necessary be adjusted down towards 10 FPS. Even if it worked well to control
the AR.Drone down at 7.5 FPS a higher target is chosen as the movement of the
CrazyFlie is much quicker than those of the AR.Drone.

3.4.2 Image file size
From the radio bandwidth calculations the maximum size of an image to meet
a certain frame rate can be calculated according to equation 3.1. From this the
graph in figure 3.3 is acquired for a few different image transfer rates.

maximum image size = transfer rate
frame rate (3.1)

The size of a raw image is given by equation 3.2 and the required compression
given a maximum allowed size of the final image is then given by equation 3.3.
From this the plots in figure 3.4 is derived.

raw image size = width·height·bits per pixel (3.2)

required compression = raw image size
max image size (3.3)
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To determine how much compression that could be applied to the images with-
out losing too much details so that it would become to hard to navigate [41] was
used to see the effects of different compression ratios. It was determined that up
to 1:40 compression would work, but going above that would begin distorting the
image to much.

Cross-referencing figure 3.3 and figure 3.4 it is directly seen that some com-
pression must be applied to the raw image if the target frame rate is to be met.
Even with compression QVGA resolution will probably be to large, requiring an
JPEG compression ratio of 1:60 of a Y ′CbCr 4:4:4 image or 1:30 of a Y ′CbCr 4:2:0
image if the data rate can be sustained at 300 kbps. Moving down to QQVGA
instead a compression ratio of just 1:33.75 for Y ′CbCr 4:4:4 or 1:22.5 for Y ′CbCr

4:2:2 is required to sustain 15 FPS with a data rate of 200 kbps.
Looking back at the measurements of the achievable data rates for image

data over the radio link in section 2.3.2 the available speed should be enough
for QQVGA images transferred at 15 FPS over a 2 Mbps link. Moving further
down to QQQVGA would then also enable the use of 1 Mbps link speed.





Chapter 4

Cameras

This chapter first provides a summary of the requirements and restrictions dis-
covered in Chapters 2 and 3. Then general information on image sensors (chip
cameras) and the process of investigating different sensors and the findings is de-
scribed. In the end, a few design alternatives are presented and one is selected for
use in the final product.

4.1 Summary of Requirements

move requirements summary to video?

Summarizing the results from Chapters 2 and 3, the following list of require-
ments and guidelines can be compiled:

Power consumption of maximally a few hundred milliwatts

The original system consumes 250 mW not accounting for the motors and 5 W
including them. A camera module consumption of 500 mW would then correspond
to a 10% increase in power consumption and doing a rough calculation, assuming
that the battery can deliver E = Pquadcoptertflight, the flight time would be reduced
by as much as 10%. Therefore the power consumption should not be higher than
a few hundred milliwatts.

Supply voltage of 2.8 V

2.8 V is the only regulated voltage available in the original system. If other voltage
levels are required, more regulators must be added. In that case, the regulators
must be able to use the 3.7 V (nominal) battery voltage or the regulated 2.8 V
as input. There should be as few extra regulators as possible to reduce waste of
energy and PCB area.
current consumption?

31
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SPI, I2C, USART or other interface requiring few I/O pins

These are the interfaces that the quadcopter provides. As described in section 2.1.2
the SPI interface cannot be replaced and one has to choose one of I2C, USART
or direct I/O for the other pins.

Maximum weight of 4 to 7 grams mounted in the center

As found earlier, the maneuverability of the quadcopter was heavily reduced when
the attached weight reached 7 g. Therefore this is the maximum weight allowable.
As moving the weight off-center also reduced maneuverability, the module should
preferably be mounted with its center of gravity in the center of the quadcopter.
explain 4 in header. is this from the non-center weight? update when new
flight data acquired

Camera mounted forwards with quadcopter visible

A forward-directed camera provided much better information for navigation than
a downwards-directed camera, though the exact angle has to be determined. Pre-
vious research also showed that it is beneficial for the pilot to see part of the vehicle
through the camera. This might however be hard to fulfill due to the small and
compact design of the quadcopter.

Minimum diagonal angle of view of 50◦, preferably 100◦

Researchers have found this to be the minimum value for adequate navigation of a
car. A quadcopter can move in one more dimension, and should therefore at least
require this angle of view.

No magnification

Both zoomed in and out images makes it harder for the pilot to control the vehicle,
therefore the magnification factor should be 1.0.

Resolution

put px/degree calculations in video factors and refernce here?

Minimum resolution of QQQVGA, preferably QQVGA

The experiments performed indicates that QQQVGA is a viable resolution. Re-
search indicates that, for controlling cars, it can be even lower.
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Minimum 10 FPS and maximum 130 ms latency

A frame rate of at least 10 FPS is needed for remote controlling a car, which most
probably means that at least 10 FPS is required for flying the quadcopter. Using
the value acquired for hovering real helicopters, the maximum latency is set to
130 ms.

Compression factor of 1:30

The calculations on image size and radio bandwidth indicates that, for a QQVGA
image, a compression factor of 1:30 is needed.
follow up requirements were applicable

4.2 General SOMETHING
4.2.1 Sensor Types
There are two dominating image sensor techniques: CCD and CMOS [24]. CMOS
and CCD are area-scan sensors (capturing a 2-dimensional picture, as opposed
to line-scan sensors which only captures 1 line). CCD sensors have traditionally
performed better with regard to shutter leakage and noise but CMOS has started
to reach the level of quality of CCD. CMOS have the advantages that it can
support a higher frame rate and it consumes one-tenth as much power as CCD
per frame, in the worst case. One disadvantage of the CMOS sensors is that most
have rolling shutters, but there now exists some with global shutters. [37]

Sensors using rolling shutters expose one line at a time to the incoming light,
this results in images of moving objects appearing distorted. CMOS sensors also
suffer from bad image quality when the lighting is low and have smaller dynamic
range compared to CCD sensors. However, CMOS has inherent antiblooming (sup-
pressing overexposure spreading to neighbouring pixels) and windowing (reading
out only a portion of the image sensor) capabilities. In CCD sensors the outputs
are basically the electrical charges obtained in the sensor, which means that extra
circuitry is needed on the PCB. CMOS on the other hand usually has the extra
circuitry on the same chip and can output digital signals. [23]

CMOS sensors had 88.6 % of the area-scan market share in 2009, while CCD
had 11.4 %. [24]

4.2.2 Image Sensor Hardware Interfaces
Most image sensors have two communication interfaces, one for control messages
and one for data. This section gives a brief description of these interfaces. Note
that pin naming is not the same in all datasheets, but the names can easily be
mapped. Figure 4.1 gives a graphical overview of the pinouts.

All sensors found (section 4.3.1) has an I2C interface for control and setup. The
Mobile Industry Processor Interface (MIPI) organization refers to this as Camera
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Figure 4.1: Pin configurations of some common image sensor interfaces

Control Interface (CCI) [25] and OmniVision refers to it as Serial Camera Control
Bus (SCCB) [29].

The most common data output interface, for the found sensors, is an 8-10-bit
parallel bus together with a few control pins. At each rising edge of the PIXCLK
signal, 8-10 bits of image data is latched on the bus. HSYNC and VSYNC signals
the end of row (line) and frame (image), respectively [20]. OmniVision calls the
interface Digital Video Port (DVP) [26], while the MIPI organization, excluding
the sync signals, refers to it as Camera Parallel Interface (CPI) [25].

The OmniVision OV3640 also has a MIPI Camera Serial Interface (CSI). This
high speed interface is commonly seen in high-resolution image sensors and has one
or several (CSI-2) lanes that transport image data serially. The physical signaling
is either differential or single-ended. [26, 22, 25]

The PixArt PAS6167 is also able to output its image data via SPI.
comment on un-fulfilled requirements

4.3 Candidate Chips
Two kinds of chips were found in the camera chip investigation. Image sensors
capture an image and output it. Some image sensors have extra image processing
capabilities and are then usually referred to as SOCs. Image signal processors
(ISPs) processes an image taken by an image sensor and outputs the result. The
processing may include scaling, compression and different output format.

The following sections describe the chips found that was deemed to be most
interesting the camera solution.

4.3.1 Image Sensors
Image sensors were sought in existing products, papers and directly on the Internet.
Modules, with both sensor and lens were also sought, both in an individual search
and modules containing the previously found image sensors. All sensors found
were of the CMOS type.
include info on existing products? 808, bluetooth based camera, mostly larger
cameras, kkmulticopter, liu copter?
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Table 4.1 lists the most suitable sensor canditates. The notation for Type is as
follows:

• SOC - System on Chip

• Module - Sensor with mounted lens

• w/ cable - Cable extending from the package

• Wafer-level camera - Chip with integrated lens

Note that the information from most vendors is very sparse and power con-
sumption is usually given only for the maximum resolution and the most favorable
supply voltages. Only sensors that have packages, that is, not only wafer/bare die,
are included. When ranges of supply voltages are valid, the values best matching
the CrazyFlie are chosen. All the found sensors operate with an input clock in the
range of 6 − 80 MHz and can output images at a rate of at least 15FPS when out-
putting VGA or, if maximum the resolution is less than VGA, at their maximum
resolution.
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Manufacturer Part Type Output Compr. Power Supply Resolution Package Dimensions Optical format
Min Max (w×h×d mm)

Aptina MT9V111 SOC parallel no <80mW 2.8V QVGA VGA ICSP-44 1/4”
Aptina MT9D131 SOC parallel JPEG 348mW 1.8V, 2.8V UXGA CLCC-48,

iCSP-64
14×14 (CLCC), 9×9 (iCSP) 1/3.2”

GalaxyCore GC0306 Module
w/cable

no [<12mA] 1.8V, 2.8V CIF VGA PLCC,
CSP

1/6”

Omnivision OV3640 SOC MIPI,
paral-
lel

JPEG [70mA] 1.5V, 1.8V,
2.8V

QXGA CSP2-56 6.3×6.1 1/4”

Omnivision OVM7690 Wafer-
level
camera

parallel no 100mW 2.8V QCIF VGA CSP-20 2.5×2.5×2.9

PixArt
Imaging Inc.

PAS6167 SOC parallel,
SPI

no [16mA] 1.8V, 2.8V QCIF+ CSP-20 5×5×3 1/13”

PixelPlus PO5010K SOC parallel no 36mW 1.8V, 2.8V QQCIF CIF CSP-31 1/11”
Sony MCB770 SOC

Module
parallel JPEG 170mW 1.2V, 1.8V,

2.8V
UXGA 14.5×17.4×10.5 1/3”

Toshiba TCM8240MD Module parallel JPEG1 [120mA] 1.6V, 2.8V Sub-
QCIF

SXGA 1/3.3”

Toshiba TCM8230MD Module parallel no [40mA] 1.5V, 2.8V Sub-
QCIF

VGA 6×6×4.5 1/6”

1 The datasheet seems to indicate that the TCM8240MD does not support JPEG compression when not using full resolution. No sources contradicting this have been found.

Table 4.1: Image sensor candidates [10, 9, 16, 26, 28, 17, 31, 11, 39, 38]
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list package dimensions instead of package type?

short discussion on interesting sensors/interesting features?

switch dated galaxycore camera to new model? it is important that it
has a flexible flat cable. gc0309 datasheet: http://www.docin.com/p-
240246436.html

explain what factors make these sensors interesting. give more info on the
most interesting ones

Image sensors

4.3.2 Image Signal Processors
ISPs provide a way to post-process the captured images by adding a chip in-
between the image sensor chip and the image destination. Features important for
the design of the camera system is functionality to shrink the image by scaling
and compression, and reducing the number of I/O pins required by transforming
the data into serial form.

Table 4.2 lists the ISPs found to be best suited for the camera system. All the
listed chips perform JPEG compression. Only the supply voltages best matching
the CrazyFlie are shown.

Out of the listed chips, OV529 is the chip with the smallest power consumption
able to provide an image scaled to less than QVGA. Except for the ADV121, data
may be communicated through SPI or UART, which is readily available on the
CrazyFlie. However, for these chips, information and datasheets can only be
acquired after signing non-disclosure agreements with the respective vendor and,
in some cases, ordering thousands of components.
open source is a goal
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Manufacturer Part Output Power Supply Resolution
Min Max

Analog Devices ADV212 parallel, DMA, SRAM, JDATA [400mA] 1.5V, 2.5V 4096×4096
Conexant CX93510 SPI, UART, I2C [12mA] 1.8-3.6V QVGA VGA
Omnivision OV529 SPI, UART, parallel 100mW VGA
Vimicro VC0706 SPI, UART, parallel, composite [65mA] 1.2V, 3.3V CIF VGA

Table 4.2: ISP candidates [2, 7, 27, 40]
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Image
sensor

Quadcopter
MCU

Figure 4.2: Design in which data is transferred directly to the Quadcopter

all have jpeg compression chips that do too much 808 mpeg
explain that lenses are often acquired separately. try to find angle values for
sensors with lenses
mpeg, frame drop

beskrivning av alternativ, kort om de olika produkterna?
section on possibility to fulfill matching requirements?

4.4 Requirements Follow-up

4.5 Design Ideas
In this section follows a number of design proposals for the camera system.

Any compression is performed in hardware since it is feared that software
processing will be too slow and consume too much energy. No sources indicating
the opposite was found during the research.
comment on cameras with radios

4.5.1 Data Transferred Directly to Quadcopter
Transferring the image data directly from the image sensor to the quadcopter will
create the smallest possible hardware design (figure 4.2). To be able to do this, the
sensor will need to have an interface compatible with the quadcopter’s available
interfaces (section 2.1.2).

Having a sensor which can do all image processing will make the overhead in
the quadcopter as small as possible. Unfortunately, the authors have not been
able to find such a chip which has an interface compatible with the quadcopter
MCU.

The second alternative is to have the quadcopter MCU do image compression
and utilize an image sensor with SPI, such as the PAS6167. This will however
result in a large computation overhead, leading to delayed images, higher power
consumption and probably lower frame rate.
source. even possible? preferably find test on stm32

Replacing the MCU with a more powerful or specialized DSP could be one
way to overcome the previously mentioned problems, however, this will most
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Figure 4.3: Design in which data is processed by a helper chip

certainly require redesign of the quadcopter PCB, since even the more power-
ful MCUs in the same family have larger footprints than the quadcopter MCU
http://www.st.com/internet/mcu/class/1734.jsp. Also, the add-on pin header
would need to be extended to accept parallel data.
mipi. differental. too fast?

4.5.2 Data Processed by Helper Chip
The following design ideas utilize an external helper chip placed in-between the
image sensor and the quadcopter MCU (figure 4.3). If the helper chip is more
advanced it may be possible, through handshakes, to let it communicate directly
with the radio chip using the SPI bus.

External Data Serialization

Using an image sensor capable of image processing and compression, one could
use a very simple helper chip that only translates parallel data from the sensor to
use the quadcopter’s SPI connection. Control of the image sensor would be done
directly by the quadcopter MCU through the I2C interface.

There exists, what is called, FIFO chips that have this functionality, but an
MCU could also be used, possibly also controlling the image sensor.
explain why a fifo chip was not chosen. maybe in the next chapter

Looking at image sensors, any of the JPEG capable sensors should be usable.
At a first glance, the TCM8240MD looks to be the perfect choice, however, the
datasheet seems to indicate that JPEG compression can only be performed at
SXGA resolution [39]. As discussed earlier (REF to prev section or merge sections)
it is preferable to not perform image processing in the quadcopter MCU. The choice
is then limited to the MT9D131, OVM7690, MCB770, where the MT9D131 is the
only sensor with a free datasheet.
list physical size in table.

mt9d131: 348mW tcm8240md: 120mA@2.8V 1.6V?

External Image Processing

Using an extra chip for image processing frees the quadcopter MCU from data
processing and allows a greater choice of image sensors, since they do not need to
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contain any extra processing capabilities.
Having all processing done in hardware - low power consumption. source. jpeg
chips have small mcus, need to compare with regular mcu running jpeg?

As described in section 4.3.2, there exists several ISP chips optimized for pro-
viding this functionality together with an interface matching one of the interfaces
of the quadcopter (section 2.1.2). Of the chips listed, only the ADV212 has a
public datasheet, but compared to the other chips has a lot more features and also
uses much more power.

ov529: 100mW active, 40mW standby vc0706: 65mA@3.3V 1.2V? camer-
acube: 100mW tcm8230 mt9v111: <80mW sources in spreadsheet
software jpeg, e.g. http://www.diydrones.com/profiles/blog/list?user=JackCrossfire
. uses stm32f4

An alternative, requiring more development effort, is to use an FPGA perform-
ing the same operations as an ISP chip.
more info

It is possible to use any one of the sensors, with parallel data output, in this
design. It is therefore the most flexible design with regard to image sensor selection.
analog camera? discuss somewhere. adc-conversion. direct radio to separate
receiver without using quad radio

4.6 vald kamera/lÃ¶sning/Chosen Solution?
describe mentioned sensors below sensor table

The most compact solution would be using the OVM7690 wafer-level camera
or the TCM8240MD camera module. Both cameras require separate compression,
since the OVM7690 has no built-in compression and the TCM8240MD only com-
presses SXGA images. Since the compression can’t be done in the quadcopter it
has to be done externally.

Due to the difficulties of acquiring documents for the ISP chips and the resulting
difficulties in publishing all results, it was decided that the design should not use
any ISP chip.

The alternatives remaining was either to create custom firmware to do encod-
ing, using an FPGA, or having the image sensor do the compression and then
serialize the data. Creating custom compression firmware would require wasting
extra development and testing, as compared to using a pre-made JPEG encoder,
and thus it was decided that an image sensor with built-in JPEG compression
should be used. Of the found JPEG image sensors, the MT9D131 was the only
one with a publicly available datasheet and it was therefore chosen.

The proposed solution looks as follows: The MT9D131 captures, scales and
compresses images. The parallel data from the image sensor is then input into a
chip for serialization and finally sent to the quadcopter MCU.





Chapter 5

System Design

5.1 Hardware
5.1.1 Selection
In section 4 the MT9D131 was found to be the camera most suited to use in the
design. As this camera has a wide parallel interface some intermediate module
must be added to do serial to parallel conversion of the data before it can enter
the CrazyFlie microcontroller. The requirements of this module is that it must be
small and as power-efficient as possible. It was also preferable if this module could
contain all logic necessary for controlling the camera module as fewer changes then
would be necessary in the CrazyFlie code and it would also enable debugging of
the camera module without the need of having the quadcopter connected.

Three different choices for this module was found, FIFO chips supporting par-
allel in and serial out, an FPGA chip or an MCU.

The FIFOs had the disadvantage that either another module with control logic
would have had to be added if the control of the camera was to be made outside
the quadcopter. Also a problem was that the power consumption of all such FIFOs
found was to high.

An FPGA chip would be able to satisfy all requirements, the main problem here
was development time and ease of change. Developing control logic and interface
logic for the FPGA would probably take considerably longer time than implement-
ing the same solution in software and it would be much harder for someone else
to make changes to the camera module in the future as it then would require not
only knowledge of C-programming but also knowledge of VHDL/Verilog.

The final solution was to use an MCU responsible for interfacing with and
controlling the camera. This enables easy testing and debugging of the whole
camera module, simplifies changing and updating the module in the future and
gives quicker development than an FPGA solution as standard functionality of the
MCU can be used in many cases.

For an MCU to be feasible for use it must at least support using DMA to read
data from GPIO pins, or alternatively have native camera interface, otherwise too
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much CPU time will be spent on reading data from the camera, consuming extra
power and possibly leaving no time for other operations that also must be done to
transfer the data on to the quadcopter.

A couple microcontrollers supporting this design but not having more features
than needed were considered. For this project we decided on using a STM32F103CB
MCU which is identical to the one used on the quadcopter. It sports a DMA unit
which can be triggered by an external signal to transfer data from GPIO pins to
SRAM which would be perfect for reading the video data from the camera module.
It also has I2C and SPI interfaces which can be used to communicate with the
camera and the quadcopter. There were also some STM32 MCUs which had a
camera interface, but those had a larger footprint, higher clock frequencies and
would consume more power and was therefore not chosen.

5.2 Design
Using the MT9D131 camera and the STM32F103CB the schematic in figure C.1
was created using KiCad, a serial port was added for debugging purposes and a
1.8V regulator for supplying the core voltage to the camera. Initially decoupling
was added so that each supply pin had it’s own decoupling capacitance, but due
to space constraints this was later changed so that neighboring supply pins was
allowed to share the same decoupling.

To allow programming and debugging the camera module both standalone
and while connected to the quadcopter a schematic for a debug card was also
created in figure C.2. It consists of one JTAG connector that a JTAG dongle can
be connected to, a connector for the camera module and a connector that can
be either connected to a power supply part of the board or to the quadcopter.
The internal connections was made so that when it is connected to the supply
part of the board the camera module gets its power from there and the JTAG
pins is connected so that there is a correct JTAG chain with only the camera
module connected. When instead the quadcopter is connected the camera module
is supplied from it and the JTAG pins is now connected so that there is a JTAG
chain consisting of the camera module and the quadcopter.

The initial plan had been to just connect the different components for the
camera module together on a off-the-self prototype board, but due to the package
of the camera module this was not an option and instead a PCB had to be designed,
the tool used to design the PCB was also KiCad.

To keep weight down and make debug probing easier it was decided to not use
a PCB with four layers but instead stick to two layers. Making the PCB as small
as possible, to be able to mount it on the quadcopter, did not add considerably
much more effort. Therefore the main goal when designing the PCB was to keep
the size down as much as possible. In addition to the camera and MCU, status
LEDs and access to one of the MCU’s USARTs was added to aid in debugging.
A barometer was also included in the design for future use in height stabilization.
In figure C.3, C.4, C.5 and C.6 is the result of the final PCB design.

The PCB was then manufactured by Gold Phoenix PCB and to further keep
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the weight down the PCB thickness was selected as half the standard thickness.
The final PCB can be seen in figure 5.1.
See if we can get images with same orientation and size

Figure 5.1: CrazyCam PCB

The components was then soldered on the PCB using a hot air station for the
camera and the MCU and standard hand soldering for the rest of the components.
Figure 5.2 shows the soldered CrazyCam module. Finally the lens was mounted,
for the prototype a rubber band was used to allow for easy removal, the final result
with lens and cable attached is show in figure 5.3.
split hardware section into subsections?

Figure 5.2: Soldered CrazyCam

5.3 Software
For the software design four main components that was to be implemented was
identified, one for each part of hardware involved, and UML action diagrams was
created for each part.
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Figure 5.3: The CrazyCam module

5.3.1 Camera module

This is the code that is responsible for controlling the camera, reading the parallel
data from it and then interfacing with and then transferring it in a serial manner
to the quadcopter.

An overview for the design of this module is available in figure E.4. The image
data is continuously transferred from the camera to a circular buffer in memory
using DMA and the software just runs a loop which reads data from this buffer
and transfers to the quadcopter over SPI.

To preserve power, the MCU power downs the camera and enters a low power
mode when not in use. This power down mode is currently not implemented, but
should be simple to add in the future.
Update code/UML/text to actually match each other

5.3.2 CrazyFlie

In the quadcopter some code must be added to receive data from the camera
module and create a CRTP packet that can be sent over the radio. As the SPI
bus in the current version of the CrazyFlie is shared between the radio and the
camera module a mutex is used to synchronize the accesses to the bus. The main
structure of the code is outlined in figure E.3

5.3.3 CrazyRadio

As it only is the radio dongle that can initiate transmissions on the radio link
it has to be adapted to regularly poll the quadcopter for new image data. USB
endpoint 2 is now used instead of the originally used endpoint 1, due to the ability
of the chip being able to double buffer this endpoint. In figure E.2 the code flow is
shown. The flow is almost the same as the one used when doing the image transfer
measurements with the only addition being checks if video is enabled or not as to
not send polling packets when they are not required.
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5.3.4 Computer
On the computer side some changes has to be made to the code responsible for
the communication with the CRTP dongle, firstly the endpoints used has to be
changed to match with the crazyradio and then some changes of the code flow
to handle more continuous transfers. The new flow in the communication of the
radio dongle is outlined in figure E.1.

For the computer code the client software also has to be adapted so that the
image data which is received is processed and then rendered in the GUI.





Chapter 6

Results

Some stuff here possibly belongs in a discussion section

The initial prototype of the camera module didn’t work at first, not accepting
JTAG commands at all. The problem was found to be the with the resistor R5
which was used to provide pull-down for the reset signal to the sensor, this signal
was also connected to the JNRST pin on the MCU which caused the JTAG state
machine to be continuously reset. This is easily solved by just removing R5 as it
is not strictly needed. For further versions this resistor should either be removed
completely from the design or it could be moved to pin 42 or 43 on the MCU
which are easily accessible for the signal, and at those pins a pull-down wouldn’t
be a problem.

The target performance for the camera module was not achieved, depending on
light conditions between 2 and 8 FPS can be acquired at a QQQVGA resolution
with a JPEG quality setting of X giving compression ratio of about Y.
Check values

The limiting factor for the frame rate was the speed of pixel clock from the
sensor, at speeds higher than 6 MHz the DMA in the MCU wasn’t able to keep
up any longer.

Also the exposure time currently doesn’t change while the sensor is in video
capture mode, so the frame rate is decided by the light conditions when the sensor
is started.

The SPI communication between the camera module and the quadcopter was
found to not work that well sporting problems with lost bytes. A more preferable
solution would be to not have to handle a slave SPI interface in software, which
should be possible on the next version for the CrazyFlie where a dedicated SPI
interface will be available for external devices, allowing for the quadcopter to
become the slave and just receive data over DMA.

The final weight of the camera module was Z g

49





Chapter 7

Conclusions

todo[inline]put this in here somewhere (about 80 FPS at 752x480 for a 100MHz
RISC MCU only doing compression
not that bad.. from url in comment: software jpeg for a 32-bit mcu with dual
issue

) http://www.diydrones.com/profiles/blogs/wifi-cam-complete 320x240 color
20fps stm32f4, 168MHz
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Future Work
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Appendix A

Radio rate measurements

Raw values for all measurements of the ACK data radio for the radio channel.
Payload for data packets is varied between 1, 16 and 32 bytes while the ACK
payload is 32 bytes in all cases. The data rate is calculated on 31 bytes to account
for overhead from the CRTP header.

Distance ACK data rate [kbps]
[m] 1 B data 16 B data 32 B data
0.15 414.952126 343.439016 271.620429
0.15 416.730638 342.062627 270.800077
0.15 417.397466 344.309110 271.408873
0.15 412.896078 342.574685 271.483890
0.15 416.233120 345.054596 271.893704
0.15 412.788967 344.702292 270.877284
0.15 416.079125 344.194185 271.360377
0.15 411.226608 343.572717 271.579745
0.15 415.821623 342.169701 271.064760
0.15 412.989376 343.662485 271.410707
0.15 413.700427 343.874119 271.434989
0.15 414.397075 344.235667 271.534212
0.15 413.894319 345.618523 272.255289
0.15 409.699266 346.169462 272.101082
0.15 410.712359 347.294118 271.488586
0.15 409.052133 343.759051 271.277613
0.15 418.835942 345.963673 272.124457
0.15 412.316748 346.029962 271.834101
0.15 415.295319 345.427895 270.014781
0.15 421.692044 345.680828 268.114885
5 356.613338 235.954204 259.193601
5 395.767573 271.300361 270.523581
5 306.156963 236.215475 266.451924
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Distance ACK data rate [kbps]
[m] 1 B data 16 B data 32 B data
5 421.857782 239.939908 270.527066
5 413.840121 184.558357 269.961924
5 415.704509 218.157686 271.178416
5 408.929859 172.609922 271.376343
5 409.103244 255.943350 271.494417
5 272.502537 147.777518 254.037858
5 417.460385 179.641986 271.501867
5 416.709015 119.149549 263.078300
5 395.952825 262.949705 237.979034
5 308.086124 135.864896 244.402790
5 343.703060 47.906497 233.017692
5 344.010325 150.865642 234.599862
5 221.850168 334.159048 266.234114
5 114.020723 286.190649 267.537064
5 325.221524 301.228167 241.781395
5 197.815492 312.620595 270.662376
5 212.919946 303.027646 238.538018

10 415.546352 344.728925 271.853154
10 410.255355 343.938483 271.717138
10 418.057342 344.179087 252.117830
10 420.835594 344.966452 271.319501
10 414.583815 344.486161 270.873414
10 409.096257 343.227917 271.599356
10 414.002757 343.377775 271.476818
10 421.513682 344.995654 270.892225
10 414.596279 345.704374 271.662423
10 413.442354 344.120531 271.409952
10 413.297173 343.390730 270.740524
10 414.766314 344.511196 272.114857
10 415.933987 347.257548 270.872017
10 411.938806 344.623810 271.816675
10 419.972151 342.706422 270.984489
10 413.206236 340.894412 271.857755
10 409.839346 344.957911 271.781828
10 414.783703 345.274148 271.222860
10 416.329075 343.364044 271.128333
10 414.755352 340.503155 271.269258
15 418.217673 342.639423 271.558624
15 415.757170 345.010911 271.044204
15 414.451671 343.236028 271.965359
15 417.255870 343.260968 271.422956
15 411.657727 334.130834 271.093125
15 411.001427 341.320954 271.598762
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Distance ACK data rate [kbps]
[m] 1 B data 16 B data 32 B data

15 418.978741 339.971107 271.576233
15 415.276624 317.362817 270.418454
15 416.352817 339.565833 271.350777
15 414.917573 344.258321 271.281925
15 413.374131 343.741568 271.458898
15 411.407774 344.682363 270.791591
15 414.484384 344.315101 270.994493
15 406.399096 342.112427 271.775931
15 411.068003 343.118887 271.309041
15 409.298985 341.106314 272.435763
15 413.338964 344.115153 271.271145
15 422.717747 343.189352 271.833398
15 416.956285 343.490341 271.569265
15 416.151795 341.527150 271.667180

Table A.1: ACK data rate measurements at 2 Mbps

Distance ACK data rate [kbps]
[m] 1 B data 16 B data 32 B data
0.15 92.647879 154.273470 165.288608
0.15 86.687497 156.248331 165.256757
0.15 91.011630 157.833793 165.115098
0.15 91.171123 160.181766 164.991983
0.15 91.071161 158.286042 166.449881
0.15 87.849190 157.877797 165.447083
0.15 90.728153 155.777822 164.469471
0.15 90.532074 157.121838 166.812428
0.15 94.505049 155.010829 164.428330
0.15 96.294441 157.115834 165.564172
0.15 102.910444 156.227949 165.562004
0.15 97.242615 155.481702 164.541303
0.15 100.193385 157.243117 167.661100
0.15 97.339656 159.298832 166.507614
0.15 90.904414 156.092988 165.295511
0.15 91.121099 156.952898 165.177004
0.15 88.005843 155.589982 163.474036
0.15 92.725652 157.896877 164.008495
0.15 90.748934 156.305018 165.442191
0.15 98.561715 157.476447 164.830199
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Distance ACK data rate [kbps]
[m] 1 B data 16 B data 32 B data
5 108.773256 154.999443 158.889402
5 116.993358 150.210538 160.922395
5 112.891998 151.674638 161.556536
5 114.067345 152.786524 161.581449
5 111.356723 151.784917 159.630866
5 108.417066 151.199662 159.571778
5 111.755736 153.051968 160.381317
5 108.265942 150.299022 160.773525
5 107.842458 151.443622 159.801732
5 111.240660 151.147771 159.642196
5 107.139000 149.664502 159.377976
5 108.022982 150.178004 158.467576
5 106.544739 153.155704 157.767204
5 109.457590 149.019472 157.046670
5 105.622338 150.607255 160.601161
5 104.505647 149.256948 159.577504
5 106.607917 151.461095 159.349627
5 103.083141 149.335426 160.000298
5 104.135903 149.018919 158.574236
5 107.882859 150.662682 158.773732

10 99.097683 149.243521 153.994812
10 100.440044 147.592701 155.575497
10 100.371152 146.795075 155.504866
10 99.710439 147.782349 152.895909
10 96.692236 147.403204 154.261268
10 99.230403 148.337354 158.428446
10 98.867644 148.076321 156.016234
10 98.886584 147.543208 146.486388
10 98.503042 148.779427 152.132720
10 102.286470 146.268389 155.350802
10 99.228153 148.135333 155.997498
10 102.488233 148.434295 154.192312
10 98.066222 150.150423 151.585419
10 99.514754 146.639049 153.180534
10 99.137648 147.024828 152.810738
10 98.142750 148.622117 150.985366
10 98.148197 147.952987 153.015329
10 102.554401 147.572520 133.454352
10 106.988372 147.969807 151.020171
10 99.958383 147.585681 153.122466
15 142.840159 147.570175 147.413295
15 143.900969 149.605757 148.124019
15 144.473398 148.991875 146.774764
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Distance ACK data rate [kbps]
[m] 1 B data 16 B data 32 B data

15 144.654726 147.142575 146.803409
15 146.285283 148.462509 142.876633
15 143.683998 142.813653 145.088442
15 142.031717 137.795952 145.940333
15 144.125929 139.622275 143.390774
15 143.327731 147.659025 143.807312
15 144.996991 146.043663 148.224720
15 143.181689 146.012394 148.688123
15 141.961656 146.857350 145.472635
15 142.563048 148.353650 146.113496
15 146.159890 148.700107 144.261573
15 146.381349 148.899434 144.347504
15 149.362938 149.668948 143.280125
15 148.119567 149.208926 144.640612
15 145.217964 149.815872 146.385994
15 146.048756 149.273790 148.338966
15 149.435246 147.937725 147.576971

Table A.2: ACK data rate measurements at 1 Mbps

Distance Image data rate [kbps]
[m] 1 Mbps 2 Mbps
0.15 344.473818 218.333257
0.15 334.729597 218.566268
0.15 329.787866 218.741175
0.15 340.212663 219.409067
0.15 332.390113 220.022132
0.15 335.146696 222.338296
0.15 340.238450 220.335245
0.15 332.268791 224.674917
0.15 335.103481 221.796629
0.15 333.602702 220.240052
0.15 329.784246 207.775473
0.15 336.217607 223.582176
0.15 334.173908 223.198375
0.15 328.164491 221.616666
0.15 337.992192 219.432524
0.15 303.946490 224.022251
0.15 331.886382 222.103252
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Distance Image data rate [kbps]
[m] 1 Mbps 2 Mbps
0.15 337.966426 226.112756
0.15 326.696116 224.034507
0.15 329.767563 222.902069
5 336.037688 182.050423
5 341.586398 182.380891
5 334.717991 182.745151
5 333.006777 187.505670
5 337.557852 185.343158
5 331.005635 173.689544
5 335.927585 185.572055
5 337.446513 180.762718
5 329.420439 182.015512
5 338.536571 181.225812
5 336.089953 183.848760
5 335.611342 174.596910
5 340.522497 186.655450
5 338.213509 185.913351
5 333.559547 188.984359
5 338.902114 184.756895
5 336.771592 185.049375
5 333.479406 190.624038
5 341.515440 182.328416
5 300.626209 190.651253

10 278.369548 207.848850
10 333.723341 206.274268
10 332.230323 206.020121
10 341.228813 206.299281
10 333.003938 210.194759
10 336.343911 207.801776
10 339.139671 205.995176
10 330.723487 207.291800
10 334.283410 206.284283
10 341.429016 205.539127
10 331.193916 204.344605
10 339.476094 206.788431
10 338.856027 205.539137
10 331.310263 207.234670
10 338.900965 204.978987
10 341.043167 204.641025
10 331.720288 206.777632
10 336.606772 206.885560
10 332.531908 208.129724
10 282.033285 208.064443
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Distance Image data rate [kbps]
[m] 1 Mbps 2 Mbps

15 229.821122 187.260929
15 227.496218 193.687938
15 221.989547 190.549807
15 261.951014 187.561135
15 289.477217 129.888235
15 216.653121 184.531867
15 251.692717 189.991778
15 271.789547 190.700027
15 282.780741 189.443398
15 188.052652 192.387810
15 186.469465 189.627396
15 285.082784 174.954678
15 250.294469 157.109858
15 281.449607 178.110414
15 284.715873 171.103374
15 273.257299 181.991384
15 282.558250 186.825822
15 188.670592 179.623385
15 213.230380 189.172397
15 206.851371 172.399095

Table A.3: Image data rate measurements

Image data rate [kbps]
1 Mbps 2 Mbps

325.622157 176.431194
340.348215 179.122392
329.479889 179.168741
322.722734 180.990881
285.500383 181.568652
310.834806 180.293306
317.164829 182.270798
327.331343 184.615492
327.401345 181.781361
331.750055 183.400960
323.294821 172.937909
323.475551 183.117363
333.117686 183.577583
335.680078 180.567708
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Image data rate [kbps]
1 Mbps 2 Mbps

324.111630 180.615347
329.587474 182.330722
326.304855 183.081058
329.098120 171.806304
335.204491 188.701629
325.285942 187.230976

Table A.4: Image data rate measurements at 10 meters through door with window

Image data rate [kbps]
1 Mbps 2 Mbps

134.771917 171.603919
100.999835 179.594346
81.079130 176.888806
27.850033 179.272080
74.491319 167.461990
66.949518 147.978727

125.018896 163.826673
137.747370 170.885353
158.180882 175.039652
201.699235 169.534629
183.999038 177.561468
165.660632 180.383646
174.120238 157.336533
148.965221 175.817199
142.434430 170.593444
73.665554 173.241628

156.444772 175.707827
116.996759 177.266688
108.280773 176.040881
68.278899 166.057473

Table A.5: Image data rate measurements at 11 meters through door with window
plus wall



Appendix B

AR.Drone Test Data

B.1 Resolution Tests
Figure B.1 shows the image from the AR.Drone scaled to different resolutions.

B.2 Angle of View Tests
Table B.1 describes the different angle of views found with different image cropping.
The angles was found by pointing the AR.Drone straight towards a wall and
measuring the dimensions of the resulting triangle, spanning from the camera
to the endpoints visible on the wall. According to section 3.2 the front camera has
a 93◦ diagonal angle of view, which does not match the value found in this table.
It is believed that the reason being due to measurement errors and the sensor area
being smaller than the lens, effectively cropping the image.
super-nice figure from notebook

The theory behind the calculation of the data can be found in section B.3

B.3 Angle Calculations
Following is an explanation of the formulas used to find the angle of view for the
AR.Drone camera. The optics are very simplified and no attention has been paid
to lens diffraction.

To find the angle of view (αx) simple trigonometry is used. Take for example
the calculation of the horizontal angle: Looking at the bottom triangle formed by
the light visible by the sensor, in figure B.3, it can be split into two equally shaped
right triangles. The distance S from the focal point to the object and half of the
width W of the object inside the view makes up the catheti of these triangles.
Using the trigonometric relation and doubling the result, the angle ah is found as
αh = 2 arctan W

2S . The same calculation can be used to find the vertical (αv) and
diagonal (αd) angles from the height (H) and the diagonal (D).
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66 AR.Drone Test Data

(a) QVGA

(b) QQVGA

Figure B.1: AR.Drone resolution test images, continues on next page
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(c) QQQVGA

(d) QQQQVGA

Figure B.1: AR.Drone resolution test images, continued from previous page
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(a) Crop factor 1, αd = 87◦, αh = 75◦, αv = 58◦

(b) Crop factor 1.2, αd = 76◦, αh = 64◦, αv = 49◦

Figure B.2: AR.Drone angle of view test images, continues on next page
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(c) Crop factor 1.5, αd = 63◦, αh = 53◦, αv = 41◦

(d) Crop factor 1.82, αd = 54◦, αh = 44◦, αv = 34◦

Figure B.2: AR.Drone angle of view test images, continues on next page
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(e) Crop factor 2, αd = 49◦, αh = 41◦, αv = 31◦

Figure B.2: AR.Drone angle of view test images, continued from previous page

Figure B.3: Measurements used to calculate the angle of view
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Distance to
wall [m]

Distance
between
endpoints
[m]

Direction Crop
Factor

Resolution [px] Angle [◦]

3.81 5.83

horizontal

1.00 320.0 75
3.81 4.74 1.20 266.7 64
3.81 3.76 1.50 213.3 53
3.81 3.08 1.82 175.8 44
3.81 2.83 2.00 160.0 41
3.80 4.20

vertical

1.00 240.0 58
3.80 3.47 1.20 200.0 49
3.80 2.82 1.50 160.0 41
3.80 2.32 1.82 131.9 34
3.80 2.13 2.00 120.0 31
3.79 7.18

diagonal

1.00 400.0 87
3.79 5.91 1.20 333.3 76
3.79 4.69 1.50 266.7 63
3.79 3.83 1.82 219.8 54
3.79 3.47 2.00 200.0 49

Table B.1: Drone front camera angle test data

Due to the exact location of the focal point being unknown, the distance to the
camera lens was used instead. The error is less than 1 cm because the focal point
must reside inside the small camera and should not affect the results considerable
due to comparatively large distance to the object (several meters). Ignoring the
diffraction probably adds a few degrees of error.
My reasoning seems validated by http://www.panohelp.com/lensfov.html but
maybe get a proper source. It does feel like common knowledge though :)
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Schematics
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(a) Main part

Figure C.1: Schematics for camera module
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(b) Power supply

Figure C.1: Schematics for camera module
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(a) Main part

Figure C.2: Schematics for debug board
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(b) Power supply

Figure C.2: Schematics for debug board
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Figure C.3: Top layer copper
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Figure C.4: Top layer silkscreen
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Figure C.5: Bottom layer copper
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Figure C.6: Bottom layer silkscreen



Appendix D

Bill of Materials

Reference Value Package Comment Quantity
P1,P2, P3,
P4

pin-header-
2x10

2.54 mm pitch 4

R5, R6 56 Ω axial 2
R4, R8 390 Ω axial 0.25 W 2
D1, D2, D3 green axial LED 3
K2 pin-array-1x3 1
P5 pin-array-1x5 1
U1 TO-220 LM317AHVT 1
R10 487 Ω axial 1
C1 100 nF axial 1
C2 1 µF axial 1
JACK_2P 1

IDC-socket-
2x10

2.54 mm pitch 4

IDC-socket-
2x10

1.27 mm pitch 4

ribbon-cable 0.635 mm pitch 1
ribbon-cable 1.27 mm pitch 1
prototype
board

1.27 mm pitch 1

Table D.1: Debug board bill of materials
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Reference Value Package Comment Quantity
R1 100 kΩ SM0603 1
R2 330 Ω SM0603 1
R4, R5, R6 10 kΩ SM0603 3
R7 220 Ω SM0603 1
C1, C2, C3,
C6, C7, C10,
C12, C14,
C15, C16,
C20

100 nF SM0603 11

C24 1 µF SM0603 1
C4, C11,
C22, C25

4.7 µF SM0603 4

D1 red LED-0603 1
D3 green LED-0603 1
P3 pin-array-10x2 1.27 mm pitch 1
U1 LQFP48 STM32F103CB 1
U2 CLCC-48 MT9D131C12STC 1
U3 SOT23-5 TPS76318 1
U4 QFN8 MS5611-01BA0X 1

cable 20x2 1.27mm pitch 1

Table D.2: Camera module bill of materials



Appendix E

UML diagrams

[Data in send buffer]
Send data
over USB

Receive data
from USB

[Send buffer empty]

Put data in
CRTP in queue

[Data received]

Fetch data from
CRTP out queue

and put in
send buffer

[No data received]

Figure E.1: Activity diagram for computer side USB code
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Read radio
status

Put radio status
in USB IN buffer

Clear radio
interrupt

flags

[else]

Flush TX-Fifo[Transmit timeout]

Move data from
Rx-FIFO to

USB IN buffer
until full or
no data left

[Data in Rx-FIFO]

[Rx-FIFO empty]

[Space in Tx-FIFO]

[USB OUT buf empty]

[Video disabled]

Put USB data
in Tx-FIFO[Data in USB OUT buf]

Put dummy data
in Tx-FIFO[Video enabled]

[Tx-FIFO full]

Handle control
data from USB

Figure E.2: Activity diagram for CrazyRadio
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Wait for video
enabled

Acquire SPI
semaphore

Start camera
module

[Image data available]

Read some image
data and put in

CRTP queue

[No image data available]

Acquire SPI
semaphore

Stop camera
module

Release SPI
semaphore

[Video disabled]

Release SPI
semaphore

Acquire SPI
semaphore

Get camera
status

Release SPI
semaphore

Acquire SPI
semaphore

Release SPI
semaphore

[Video enabled]

Figure E.3: Activity diagram for CrazyFlie
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sleep [Video disabled]

Power up
camera

[Video enabled]

Start
peripherals

Start timer

Wait for
timer tick

[Video enabled]

[Video disabled]

Stop timer

Stop
peripherals

Power down
camera

Take picture

Figure E.4: Activity diagram for camera module
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